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Abstract: This work presents a soft-filtering digital signal processing architecture based on sigma-
delta modulators and stochastic computing. A sigma-delta modulator converts the input high-
resolution signal to a single-bit stream enabling filtering structures to be realized using stochastic
computing’s negligible-area multipliers. Simulation in the spectral domain demonstrates the filter’s
proper operation and its roll-off behavior, as well as the signal-to-noise ratio improvement using the
sigma-delta modulator, compared to typical stochastic computing filter realizations. The proposed
architecture’s hardware advantages are showcased with synthesis results for two FIR filters using
FPGA and synopsys tools, while comparisons with standard stochastic computing-based hardware
realizations, as well as with conventional binary ones, demonstrate its efficacy.
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1. Introduction

Modern digital signal processing (DSP) blocks are characterized by hardware efficiency
and high-performance computations [1,2]. On the other hand, standard binary computing
methods impose constraints on their design specifications, namely power, area, and energy,
which are continuously increasing given the rise of hardware-taxing emerging applica-
tions [2]. To this end, unconventional computing paradigms are explored as an alternative
to the binary one, with stochastic computing (SC) being an attractive approach [3–6].

SC represents real-valued numbers in the form of stochastic sequences [7]. Encoding
the information in such a way makes its processing resilient to soft errors originating
from noisy sources [3,8], for instance bit-flips, which is prohibitive in the case of the
binary arithmetic. Furthermore, SC’s bit-processing nature allows for the realization
of fundamental arithmetic operations as well as highly-complex functions using a few
standard logic gates and cells, thereby reducing the hardware requirements when compared
to their binary counterparts [3,4,9–12].

The advantages of SC favor the design of several applications, especially the ones in
which parallelization is necessary. These include neural networks [13–19], digital image
processing [20–24], soft-polynomial solving and filtering [25–30], modern error coding and
decoding, etc. [31]. Focusing on digital filters, SC-based implementations of the standard
Nyquist-rate ones are proven to be hardware-efficient [25,27–30]. Their key advantage lies
in the multiplication process; instead of using the area-demanding binary multipliers, SC
exploits simple XNOR gates and MUXs to realize the multiplication and addition parts,
respectively, improving the area occupied by the intensive multiply-and-add operations.

Although the SC filters realized using the methods considered in [27–30] reduce the
hardware resources when compared to the standard binary approach, they are also limited
in their spectral characteristics. Specifically, their performance is affected by two factors:
(1) the length of the stochastic sequence required to process a single sample, which is
SC’s essential design trade-off, and (2) the noise introduced from the binary-to-stochastic
converters used to generate the input signal and the filter’s coefficients.
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A well-known method to reduce the noise floor and improve the spectral characteris-
tics of a quantized signal is to use sigma-delta modulators (SDMs) [32–34]. They convert
a high-resolution signal (several bits) into a lower-bit one by employing the technique of
oversampling; the input signal is sampled at a frequency much higher than the Nyquist,
thus reducing the noise in the desired frequency band of interest.

Motivated by the properties of SDMs, the use of a first-order SDM in FIR filtering was
recently explored in [26]. It serves as a single-bit encoder of an input (quantized) signal,
allowing for the SC-based FIR filter’s multipliers to be realized exclusively by simple logic
gates. As such, the proposed SDM-SC architecture’s advantage is twofold; on one hand
it offers improved signal-to-noise ratio (SNR), due to the SDM’s oversampling technique,
which is not possible with conventional SC-based filtering; on the other hand, the SDM
allows for the filtered signal to be encoded in time, therefore reducing the SC’s typical
accuracy–latency trade-off as well as the power and energy consumed for this process.

We organize the remainder of the proposed work as follows. In Section 2, we provide
a background on the stochastic numbers and their properties, as well as the operation of the
first-order SDM. In Section 3, we review the prior work in SC-based FIR filter realizations
and mathematically formulate their operation. In Section 4, we present the SDM-SC
architecture and explain its principle operation through proper analysis. Section 5 includes
experimental results with respect to (1) the SDM-SC’s architecture spectral characteristics
and (2) comparisons with the SC literature as well as the conventional binary filters in
SNR, FPGA synthesis results, and hardware resources in a 45 nm process. Finally, Section 6
provides the conclusion.

2. Stochastic Computing and Sigma-Delta Modulation Notation and
Principle Operation

In this section, we provide a background on the generation of stochastic numbers
and their manipulation using standard logic gates, as well as explain the operation of the
first-order sigma-delta modulator.

2.1. Stochastic Number Generation & Properties

The conversion of a binary number into a stochastic one is typically performed by the
stochastic number generator (SNG), shown in Figure 1. Its operation is based upon the
sampling on each clock cycle of a pseudo-random number generator uniformly distributed
in Rs = {0, 1, . . . , 2k − 1}, with the desired binary number B ∈ [0, 1] of the same bit
length. Usually, the pseudo-random number source is implemented as a k-bit linear
feedback shift register (LFSR), but note that other methods can also be used [35]. The bit
generation is completed after N = 2k clock cycles and corresponds to the length of the
stochastic sequence.

Formally, the generated sequence of length N, {Xn}N
n=1, where n denotes the current

sample processed (or the current clock cycle), is assumed to be an independent and identi-
cally distributed (IID) Bernoulli sequence. Therefore, the generated stochastic number (SN)
has probability defined as

X , P(Xn = 1) (1)

and mean value

X̃N ,
1
N

N

∑
n=1

Xn. (2)

The SN’s mean value X̃N represents a non-negative number in [0, 1], known as unipolar
format in SC, whereas to obtain a negative SN representation (known as bipolar format),
the transformation X 7→ 2X − 1 is used, expanding the range of the SN to the interval
[−1, 1]. As expected, in both formats the sequence length N plays a critical role in the
accuracy of the SN given the fact that it increases at the cost of additional clock cycles and
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is inversely proportional to
√

N [36]. To further investigate the equivalent noise introduced
by an SN, one can consider the noise figure (NF) [37] defined as

NF , 10 log 10
(

PS
PN

)
, (3)

where PS and PN are the average power and noise, respectively, of the generated SN.

<

Figure 1. Stochastic sequence generation: (a) Stochastic number generator (SNG) block; (b) Equiva-
lent block.

2.2. Mathematical Properties of Logic Gates in Stochastic Computing

Fundamental mathematical operations are supported in the context of SC and can be
implemented by simple logical gates, according to the format used. For the following, we
assume that {Xn}N

n=1, {Yn}N
n=1 are stochastic sequences generated by different SNGs, to

ensure independence among them, and {Hn}N
n=1 is the result of their operation. We also

note that whenever the bipolar format is required, the transformation X 7→ 2X− 1 is used.

• NOT Gate
In unipolar format, the output of the NOT gate, Hn = NOT(Xn), complements the
probability of the input,

H = P(Hn = 1) = P(Xn = 0) = 1− P(Xn = 1) = 1− X, (4)

whereas in the bipolar format, it operates as a sign inverter.

H = P(Hn = 1) = P(Xn = 0) = 1− P(Xn = 1) = −X. (5)

• AND Gate:
The AND gate in unipolar format, Hn = AND(Xn, Yn), performs multiplication.

H = P(Hn = 1) = P(Xn = 1, Yn = 1) = P(Xn = 1)P(Yn = 1) = XY. (6)

• XNOR Gate:
The XNOR gate in bipolar format, Hn = XNOR(Xn, Yn), performs multiplication.

H = P(Hn = 1) = P(Xn = 1, Yn = 1) + P(Xn = 0, Yn = 0)

= 2P(Xn = 1)P(Yn = 1)− P(Xn = 1)− P(Yn = 1) + 1 (7)

= XY.

• Multiplexer
Assuming an an IID control sequence {Cn}N

n=1, the multiplexer (MUX),
Hn = MUX(Xn, Yn; Cn), is the standard way to perform scaled addition between
two SN, regardless of the format used, and is given as

H = P(Hn = 1) = P(Xn = 1, Cn = 1) + P(Yn = 1, Cn = 0)

= P(Xn = 1)P(Cn = 1) + P(Yn = 1)P(Cn = 0)

= XC + YC. (8)
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Furthermore, if P(Cn = 1) = 1/2, the MUX operates as a scaling adder, i.e.,

H = P(Hn = 1) =
P(Xn = 1) + P(Yn = 1)

2
=

X + Y
2

. (9)

Stochastic subtraction, on the other hand, can only be realized in the bipolar format,
using a NOT gate in one of the two inputs as

H = P(Hn = 1) =
P(Xn = 1) + P(Yn = 0)

2
=

X−Y
2

. (10)

The operation of logic gates with specific interest is illustrated with an example in
Figure 2.

Figure 2. Stochastic computing fundamental operations: (a) Unipolar multiplication, (b) bipolar
multiplication, (c) unipolar/bipolar addition.

2.3. Correlation in Stochastic Computing

The proper operation of SC processing elements is based upon the assumption that
different SNGs are used as their input sequences. This is due to the fact that using the
same initial seed in their LFSRs will cycle through the values inRS simultaneously, thereby
generating maximally correlated sequences (overlap of logic 1s) given the same binary
number for conversion [38–40]. To provide better insight on the former, consider the case
where the multiplication of two SNs is desired, i.e., H = XY, with X = Y = 0.6. If SNGs
with the same initial LFSR seed are used, then two identical sequences will be generated and
their multiplication will result in H = 0.6, instead of the correct one H = 0.36. The same also
happens when the LFSR is shared among the SNGs, without different seed initialization
or proper use of delays. However, it has been shown that in certain cases, maximally
correlated sequences can benefit specific applications [3,10], offering promising results.

A standard measure of correlation in SC is the stochastic computing correlation
(SCC) [3,38]. For any two sequences {Xn} and {Yn}, then SCC(Xn, Yn) is calculated as

SCC(Xn, Yn)=



E[Xn, Yn]−E[Xn]E[Yn]

min(E[Xn],E[Yn])−E[Xn]E[Yn]
, E[Xn, Yn]>E[Xn]E[Yn]

E[Xn, Yn]−E[Xn]E[Yn]

E[Xn]E[Yn]−max(E[Xn] +E[Yn]−1, 0)
, otherwise

, (11)

taking values in [−1, 1], with SCC(Xn, Yn) = 0 corresponding to uncorrelated sequences.
Note that SCC can also be used to measure the the auto-correlation of an output sequence,
assuming the current output sample Hn and its delayed version by r > 0 samples Hk,
with k = n + r, as SCC(Hn, Hk).
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2.4. The First-Order Sigma-Delta Modulator

A Sigma-Delta Modulator (SDM) is typically used to convert a higher-resolution
analog or digital signal into a lower-bit one. Its main advantage is the exploitation of the
oversampling technique, which pushes the in-band quantization noise outside the input
signal’s frequency band of interest. This is accomplished by sampling the input signal at a
rate fs much higher than the Nyquist one. The oversampling ratio (OSR) is defined as

OSR ,
fs

2 fB
, (12)

where fB is the maximum input signal’s frequency. Oversampling has a direct impact on
the spectral quality of the modulator and, more specifically, increasing the OSR leads to an
improvement of the modulator’s signal-to-noise ratio (SNR) [34].

The first-order single-bit SDM is shown in Figure 3. It comprises an adder and an
integrator, followed by a two-step quantizer block, Q(·), which behaves as a nonlinear
function as

Q(Yn) =

{
+1, Yn ≥ 0
−1, Yn < 0

. (13)

According to the SDM of Figure 3, the modulator’s input Un, with n being the time index,
is of m-bits length, whereas its output Vn is single-bit ±1. Therefore, the behavior of the
first-order SDM can be expressed as

Vn = Q(Yn−1 + Un −Vn−1). (14)

Figure 3. The first-order single-bit sigma-delta modulator. A dithering sequence can optionally
be used.

3. Prior Work in Stochastic Computing FIR Filters

For an arbitrary discrete-time signal Ut, t = 1, 2, . . . , T and filter coefficients wm,
m = 1, 2 . . . , M, an M-tap finite impulse response (FIR) filter is described as

Zt =
M−1

∑
m=0

wmVt−m = wTV . (15)

where w = [w0, w1, . . . , wM−1] ∈ RM and V = [Vt, Vt−1, . . . , Vt−M+1] ∈ RM. A straightfor-
ward realization of Equation (15), using SC techniques, requires M− 1 XNOR gates for
multiplication, as the values of wm, and Vt−m might be negative, and an M-to-1 MUX for
addition. However, this implementation leads to the downscaling of the output by a factor
of 1/M, which causes severe accuracy loss, especially when the filter’s order M is large.

To address this problem, a stochastic FIR filter that uses an MUX adder-tree was
proposed in [41], and is based on the inner-product processing unit shown in Figure 4.
Instead of the standard method to perform multiplication in bipolar format using XNOR
gates, the sign of the weights is also considered, and thus the multiplications are realized
using XOR gates. To explain the signed XOR gate’s operation as an SC multiplier in bipolar
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format, assume first a 2s complement binary representation of a signed-value weight wm,
where its most significant bit serves as its sign, i.e.,

sign(wm) =

{
0, wm ≥ 0
1, wm < 0

. (16)

Considering now a sample of the input signal Vt converted into a stochastic sequence
with probability P(Vt,n = 1), then the output of an XOR gate is

P(Gt,n = 1) = sign(wm) + P(Vt,n = 1)− 2sign(wm)P(Vt,n = 1)

=

{
1− P(Vt,n = 1), sign(wm) = 1
P(Vt,n = 1), sign(wm) = 0

, (17)

which is simplified to a multiplication sign(wm)Vt given the definitions of the NOT
gate in Section 2. Finally, using an uneven control signal with probability
P(Cn = 1) = |w0|/(|w0|+ |w1|), the output of the MUX is

Z = P(Zn = 1) = P(Cn = 1)P(Gt,n = 1) + P(Cn = 0)P(Gt−1,n = 1)

=

(
|w0|

|w0|+ |w1|

)
sign(w0)Vt +

(
1− |w0|
|w0|+ |w1|

)
sign(w1)Vt−1 (18)

=
1

|w0|+ |w1|

(
w0Vt + w1Vt−1

)
,

producing an inner-product scaled by 1/(|w0|+ |w1|).

Figure 4. Inner-product block with two inputs.

Based on the inner product module of Figure 4 and the former analysis, an M-
tap stochastic FIR filter can be realized, with its output scaled, however, by a factor of
1/ ∑M−1

m=0 |wm|. It requires, in total, M XNOR gates, M − 1 MUXs, and 2M − 1 SNGs.
A representative example of a five-tap FIR filter implemented with the aforementioned
inner-product module is shown in Figure 5.
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Figure 5. Stochastic implementation of a five-tap FIR filter based on the inner-product block of
Figure 4.

4. Proposed SDM-SC Processing Scheme

In this section, we present the proposed SDM-SC architecture as it was introduced
in [26], and is shown in Figure 6. It converts a multi-bit input signal into a single-bit
one using a first-order SDM to exploit the SC’s encoding and benefit from its low-area
advantages. Moreover, it allows for time-encoding and, consequently, processing of the input
signal, therefore bypassing the long-latency of the standard SC approaches. To proceed
with the detailed analysis of the architecture, we start from the first-order SDM.

Figure 6. Proposed SDM-SC architecture. The first-order SDM encodes a multi-bit input signal into a
single-bit one, carrying the information in 0, 1 representation. The sequence is then processed by an
SC-based M-tap FIR filter. A dithering sequence can optionally be used.

4.1. SDM Encoding

In the architecture of Figure 6, the SDM block is the digital realization of the system-
level one shown in Figure 3. Its input Un is of m-bits length, whereas Vn is the single-bit
output. A register of c-bits can replace the integrator of Figure 3, allowing for the SDM’s
iterative behavior to be expressed according to Equation (14). With respect to its size
(in bits), it should be noted that c ≥ m so as to account for the accumulation process,
with typical value c = m + 1.

The quantization process of the SDM in Figure 3 can be modeled simply as the
register’s most significant bit (MSB); the current input sample, i.e., Un, determines if, and
only if, the accumulator’s current value is positive or negative, corresponding to an MSB of
0 or 1, respectively. Finally, it should be noted that Vn’s negative value, i.e., 1, is converted
into −1 using sign-extension methods.
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The SDM’s maximum operating frequency fs corresponds to the register’s one and,
as expected, determines the input signal’s maximum operating frequency fB that the
architecture is able to process. Optionally, a dithering sequence can be employed to further
decrease the SDM’s output noise floor [32–34].

4.2. Stochastic FIR Filter

According to Equation (15), the binary implementation of an M-tap FIR filter requires
M− 1 D flip-flops, M binary multipliers of m + l-bit length, where m and l are the input
signal’s and the coefficient’s bit resolutions, respectively, and a binary adder of m + l +
log2(M)− 1 bits to avoid overflows, based on the guidelines in [42].

The architecture of Figure 6 exploits the SDM’s 0, 1 encoding of the input signal,
allowing for the M binary multipliers of m + l-bit length to be replaced by M AND gates.
Furthermore, in contrast to the standard adder method used in SC, which is based upon
the realization of an adder tree using the inner-product processing block of Figure 4, we
use a simple binary adder of N = dlog2Me-bits. As such, the value of Zn is binary and
belongs in {0, 1, . . . , M − 1}. At this point, we note that one can also explore single-bit
output implementations of the proposed architecture, using several non-scaling adders
available in the SC literature [11,20,43].

To proceed with further analysis, we assume that each weight is converted into a
stochastic sequence with probability wm = P(wm,n = 1), with m = 1, 2, . . . , M, and also
that the probability of each AND gate’s output is

Sm = P(Sm,n = 1) = P(wm,n = 1)Vn. (19)

Considering the above and the architecture of Figure 6, the instantaneous value of the
output Zn is the sum of the multiplications and is given as

Zn =
M−1

∑
m=0

Sm. (20)

4.3. Stochastic Coefficient Generation

The conversion of the filter’s coefficients wm to stochastic numbers in the architecture of
Figure 6 requires M SNGs. This, however, implies the use of M LFSRs of k-bits, which, along
with their respective k-bit comparators, are hardware-taxing (in total, k×M registers). On
the other hand, simple sharing of a single LFSR, as the random number generator between
all SNGs, introduces maximal correlation among the generated sequences according to
Equation (11), and thus it is expected to degrade the filtered signal’s spectral quality [26,41].

In order to reduce the hardware resources from the SNGs, we employ the LFSR circular
shifting scheme proposed in [44], shown in Figure 7. This scheme generates M stochastic
sequences in parallel without being maximally correlated using a single LFSR. This is
achieved, since the LFSR cycles through all of its values within Rs only once. Therefore,
if Rn,i is the LFSR’s current binary value n at time index i = 1, 2, . . . , M, the circular shift by
s ∈ N∗ bits, where s < k, produces the next value Rn,i+1 as

Rn,i+1 , R(n−s,i)N
= Rn−s,i mod N. (21)
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<

Figure 7. SNG sharing scheme with circular shifting.

5. Experimental Results

In this section, we demonstrate the performance of the proposed SDM-SC architecture.
Specifically, we show experimental results with respect to 1) its spectral characteristics,
and 2) comparisons with standard SC-based approaches, as well as with the conventional
binary, in SNR and hardware resources.

5.1. Performance of the Proposed SDM-SC Architecture in the Spectral Domain

Here, we evaluate the performance of the proposed SDM-SC architecture in the
spectral domain with simulations using MATLAB. We consider a sinusoidal input signal
Un = sin(2π fBn), and test it over two FIR filters, a 5- and a 7-tap one. The simulation
parameters, including the filters’ weights, are summarized in Table 1.

It is important to note that all frequencies are fractional with respect to the sampling
frequency fs. Moreover, to generate the sequences of the weights, LFSRs with initial register
size of 15-bits are used and correspond to sequences with length 215.

Table 1. Simulation parameters.

Parameter Name Parameter Value

Input signal Un sin(2π fBn)
5-tap FIR filter weights w0 = w4 = 0.7, w1 = w3 = 0.6, w2 = 0.9
7-tap FIR filter weights w0 = w6 = 0.6, w1 = w5 = 0.4, w2 = w4 = 0.3, w3 = 0.9

In Figures 8 and 9, the power spectral density (PSD) (top) and frequency response
(bottom) for the 5 and 7-tap FIR filters are respectively shown. To calculate the power
spectral density, MATLAB’s pwelch function was used and 106 samples were considered.
With respect to the frequency response, it can be observed that the SDM-SC architecture
follows the conventional one’s, correctly achieving the cut-off frequency ω−3dB.

To showcase the ability of the proposed SDM-SC architecture to achieve improved
performance, we show the power spectral density of the SDM’s output in Figure 10. It is
calculated using MATLAB’s pwelch function with 106 samples. As one can observe the
SDM reduces the noise floor in low frequencies.
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Figure 8. Power Spectral Density (top) using pwelch with 106 samples and frequency response
(bottom) of the SDM-SC architecture for a 5-tap FIR filter. Weights’ values are cited in Table 1.
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Figure 9. Power Spectral Density (top) using pwelch with 106 samples and frequency response
(bottom) of the SDM-SC architecture for a 7-tap FIR filter. Weights’ values are cited in Table 1.
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Figure 10. Power Spectral Density of the SDM’s output calculated using pwelch with 106 samples.
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5.2. Signal-to-Noise Ratio Comparisons

Here, we show the advantage of the proposed SDM-SC architecture over the standard
SC-based implementations with SNR comparisons. We realize the 5- and 7-tap FIR filters
using the inner-product module of Figure 4, with their coefficient values taken from Table 1
With respect to the conventional binary approach, we assumed the existence of round-off
noise in the coefficients and in the input signal, where the bit resolution is selected to be 15-
bits. In Table 2, the SNR comparison between the two approaches is shown, accompanied
by the conventional binary.

Table 2. SNR Comparison for the 5 & 7-tap FIR filters.

5-Tap FIR Filter 7-Tap FIR Filter

SDM-SC
Inner-Product

Adder-Tree
[29,30,41]

Conv.
Binary SDM-SC

Inner-Product
Adder-Tree
[29,30,41]

Conv.
Binary

SNR (dB) 47.01 31.41 97.21 42.94 29.93 91.31

According to the results shown in Table 2, the proposed SDM-SC filtering scheme
achieves better SNR than the filtering realized using the inner-product module of Figure 4,
which is due to the SDM’s oversampling. On the other hand, compared to the traditional
binary, the SDM-SC architecture achieves lower SNR. Yet, its negligible low-area advantages
as an approximate filtering scheme are highlighted in the following subsection.

5.3. FPGA Synthesis Results and Comparison

The low-area benefits of the proposed SDM-SC architecture are demonstrated here.
We compared its hardware resources required to realize the two FIR filters with 5 and
7 taps, with the conventional binary and the inner-product approach synthesized in Xilinx’s
Vivado Design Suite targeting the Kintex-7 FPGA KC705 device. We considered a k = 15-bit
resolution of the input signal U, which also corresponds to the LFSR’s size used to generate
the weights, wm. The hardware utilization results are cited in Table 3. For the results
shown, we note the following: (1) for the conventional binary approach, the DSP blocks
are converted into their LUT equivalents to have a uniform comparison of the resources
among the approaches considered, and (2) the SNGs are included in the utilization results.

Table 3. Comparison of FPGA synthesis results for two FIR filters with 5 & 7 taps.

5-Tap FIR Filter

SDM-SC Filter Inner-Product
Adder-Tree [29,30,41] Conv. Binary

Max Operating Frequency (MHz) 667

Slice LUTs [Used/Util.] 29/0.01% 35/0.01% 698/0.34%

Slice Registers [Used/Util.] 35/0.01% 178/0.05% 60/0.02%

7-tap FIR filter

SDM-SC Filter Inner-Product
Adder-Tree [29,30,41] Conv. Binary

Max Operating Frequency (MHz) 667

Slice LUTs [Used/Util.] 30/0.01% 42/0.01% 907/0.45%

Slice Registers [Used/Util.] 37/0.01% 238/0.06% 90/0.02%

According to the results shown in Table 3, the proposed SDM-SC architecture can
realize a 5-tap FIR filter with 29 LUTs and 35 registers. On the contrary, the inner-product
FIR approach based on [29,30,41] requires only a few LUTs more, namely 35, but also
143 register slices more, which is due to the required SNGs for (1) the MUXs and (2) the
generation of the input signal’s delays. The conventional binary five-tap FIR filter requires
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additionally 669 LUTs and 25 slice registers (in total, 698 LUTs and 60 slice registers),
making the SDM-SC architecture a hardware-favored approach as it reduces the LUTs by
96% and the slice registers by 42% of the binary filter.

To realize the 7-tap filter, the SDM-SC architecture requires only two registers and
one LUT more; increasing the order of the filter by two requires two delays, corresponding
to two flip-flops as a result of the SDM’s single bit encoding, while the one LUT increase is
due to the additional wiring required to output the result. The inner-product approach,
however, requires 60 slice registers more to increase the filter’s order by two, which is due
to the four SNGs required for the addition of an inner-product block as well as the MUX
producing the output. The increase on the hardware resources is also observed when the
conventional binary FIR filter’s order is increased, which is equal to 209 LUT and 30 register
slices more. As such, the SDM-SC architecture reduces, in this case, the binary realization’s
LUT and slice register utilization by 96.7% and 60%, respectively.

5.4. Hardware Resources Comparison in a 45 nm Technology

To further proceed with the hardware comparisons, here we provide the resources
required to realize the two FIR filters with 5 and 7 taps, extracted using the Synopsys
Design Compiler with the FreePDK CMOS library at 45 nm [45]. For the comparisons,
the following estimates are provided: (1) the total area in (µm2); (2) the average power
consumption in mW; (3) the delay in ns; (4) the energy consumption in pJ, defined as the
average power × delay product. In Table 4, the results are shown in detail.

Table 4. Comparison of hardware resources for the realization of two FIR filters with 5 & 7 taps in
area (µm2), power (mW), delay (ns), and energy (pJ).

5-Tap FIR Filter

SDM-SC Filter
Inner-Product

Adder-Tree [29,30,41] Conv. Binary

Area (µm2) 617.12 3425.88 9853.89

Power (mW) 0.75 2.97 5.19

Delay (ns) 1.5

Energy (pJ) 1.13 4.46 7.78

7-tap FIR filter

SDM-SC Filter
Inner-Product

Adder-Tree [29,30,41] Conv. Binary

Area (µm2) 700.66 4935.67 13,428.55

Power (mW) 0.83 4.39 7.12

Delay (ns) 1.5

Energy (pJ) 1.24 6.51 10.58

Focusing on the realization of the 5-tap FIR filter, when compared to the inner-product
and conventional binary approaches, the proposed SDM-SC architecture reduces, respec-
tively, 1) the total area occupied by 81.9% and 93.7%, and 2) the total power and energy
consumption by 74.7% and 85.5%. For the realization of the 7-tap FIR filter, the pro-
posed SDM-SC architecture reduces, respectively, 1) the total area occupied by 85.8% and
94.8%, and 2) the total power and energy consumption by 81.09% and 88.34%. As such,
from Table 4, one can conclude that the proposed SDM-SC architecture is the most efficient,
hardware-wise, as it results in the least occupied area and power and energy consumption
among the considered approaches.

Of great interest is the number of resources required to increase the filter’s order. The
SDM-SC architecture requires only 83.54 µm2, 0.08 mW, and 0.11 pJ, corresponding to
an increase of the resources by 11.9%, 9.6%, and 8.8%, respectively. On the other hand,
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the inner-product approach requires 1509.8 µm2, 1.42 mW, and 2.05 pJ, corresponding
to an increase of the resources by 30.5%, 32.3%, and 31.4%, respectively, whereas the
conventional binary requires 3574.7 µm2, 1.93 mW, and 2.8 pJ, corresponding to an increase
of the resources by 26.6%, 27.1%, and 26.4%, respectively.

A further advantage of the SDM-SC’s architecture in filtering over the inner-product
approach is that of time-encoding. Assuming that the input signal Un is of length N̂, then
the SDM-SC approach processes N̂ samples in N clock cycles, whereas the inner-product
approach requires N clock cycles for a single sample of N̂, thus requiring N × N̂ clock
cycles to complete the processing. This, however, reflects on the total dissipated energy by
the inner-product approach, which is increased by N. Therefore, this makes the SDM-SC
architecture both faster in terms of processing time and a more energy-efficient approximate
processing approach, besides its improved SNR performance.

6. Conclusions

A soft-filtering architecture based on SDMs and SC was presented in this work. The
first-order SDM acts as a single-bit encoder to benefit from the negligible area SC multipliers,
implemented as XNOR gates. The performance of the SDM-SC architecture was evaluated
in two different-order FIR filters in the spectral domain, where the filters’ proper operation
and roll-off behavior were shown. Compared to the standard SC-based filtering approach,
it was shown that the SDM-SC architecture improves the SNR by more than 10 dB, while
at the same time eliminates the SC’s typical latency–accuracy trade-off, as it provides
encoding in time, reflecting on the power and energy consumption, as well. With respect
to the hardware resources, FPGA and synopsys synthesis results demonstrated the SDM-
SC’s negligible area advantages and its highly energy-efficient processing over standard
SC-based and binary approaches.
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Abbreviations
The following abbreviations are used in this manuscript:

FIR Finite impulse response
FPGA Field-programmable gate-array
LFSR Linear-feedback shift register
LUT Look-up table
MUX Multiplexer
OSR Oversampling ratio
PSD Power Spectral Density
SC Stochastic computing
SDM Sigma-delta modulator
SDM-SC Sigma-delta modulator-stochastic computing
SN Stochastic number
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SNG Stochastic number generator
SNR Signal-to-noise ratio
XNOR Exclusive-NOR
XOR Exclusive-OR
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